Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cell Mol Immunol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409249

RESUMO

Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.

2.
Free Radic Biol Med ; 213: 443-456, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301976

RESUMO

M1 (LPS) macrophages are characterized by a high expression of pro-inflammatory mediators, and distinct metabolic features that comprise increased glycolysis, a broken TCA cycle, or impaired OXPHOS with augmented mitochondrial ROS production. This study investigated whether the phytochemical sulforaphane (Sfn) influences mitochondrial reprogramming during M1 polarization, as well as to what extent this can contribute to Sfn-mediated inhibition of M1 marker expression in murine macrophages. The use of extracellular flux-, metabolite-, and immunoblot analyses as well as fluorescent dyes indicative for mitochondrial morphology, membrane potential or superoxide production, demonstrated that M1 (LPS/Sfn) macrophages maintain an unbroken TCA cycle, higher OXPHOS rate, boosted fusion dynamics, lower membrane potential, and less superoxide production in their mitochondria when compared to control M1 (LPS) cells. Sustained OXPHOS and TCA activity but not the concomitantly observed high dependency on fatty acids as fuel appeared necessary for M1 (LPS/Sfn) macrophages to reduce expression of nos2, il1ß, il6 and tnfα. M1 (LPS/Sfn) macrophages also displayed lower nucleo/cytosolic acetyl-CoA levels in association with lower global and site-specific histone acetylation at selected pro-inflammatory gene promoters than M1 (LPS), evident in colorimetric coupled enzyme assays, immunoblot and ChIP-qPCR analyses, respectively. Supplementation with acetate or citrate was able to rescue both histone acetylation and mRNA expression of the investigated M1 marker genes in Sfn-treated cells. Overall, Sfn preserves mitochondrial functionality and restricts indispensable nuclear acetyl-CoA for histone acetylation and M1 marker expression in LPS-stimulated macrophages.


Assuntos
Histonas , Isotiocianatos , Lipopolissacarídeos , Sulfóxidos , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Superóxidos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo
3.
Antioxidants (Basel) ; 12(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37627537

RESUMO

Currently, the interest of consumers towards functional foods as source of bioactive compounds is increasing. The sprouts of Raphanus sativus var longipinnatus (Brassicaceae) are "microgreens" popular, especially in gourmet cuisine, for their appealing aspect and piquant flavour. They represent a functional food due to their high nutritional value and health-promoting effects. Herein, the sprouts of daikon were extracted by different solvent mixtures to highlight how this process can affect the chemical profile and the antioxidant activity. An in-depth investigation based on a preliminary LC-ESI/LTQOrbitrap/MS profiling was carried out, leading to the identification of nineteen compounds, including glucosinolates and hydroxycinnamic acid derivatives. An undescribed compound, 1-O-feruloyl-2-O-sinapoyl-ß-D-glucopyranoside, was isolated, and its structure was elucidated by NMR spectroscopy. The phenolic content and radical scavenging activity (DPPH and TEAC assays), along with the ability to activate Nrf2 (Nrf2-mediated luciferase reporter gene assay) of polar extracts, were evaluated. The results showed the highest antioxidant activity for the 70% EtOH/H2O extract with a TEAC value of 1.95 mM and IC50 = 93.97 µg/mL in the DPPH assay. Some 50% and 70% EtOH/H2O extracts showed a pronounced concentration-dependent induction of Nrf2 activity. The extracts of daikon sprouts were submitted to 1H NMR experiments and then analyzed by untargeted and targeted approaches of multivariate data analysis to highlight differences related to extraction solvents.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627580

RESUMO

Nrf2 is a transcription factor facilitating cells' resilience against redox and various other forms of stress. In the absence of stressors, KEAP1 and/or ßTrCP mediate the ubiquitination of Nrf2 and prevent Nrf2-dependent gene expression and detoxification. AMPK regulates cellular energy homeostasis and redox balance. Previous studies indicated a potential Nrf2-AMPK cooperativity. In line with this, our lab had previously identified three AMPK-dependent phosphorylation sites (S374/408/433) in Nrf2. Given their localization in or near the Neh6 domain, known to regulate ßTrCP-mediated degradation, we examined whether they may influence the ßTrCP-driven degradation of Nrf2. By employing expression plasmids for WT and triple mutant (TM)-Nrf2 (Nrf2S374/408/433→A), (co)immunoprecipitation, proximity ligation, protein half-life, knockdown, ubiquitination experiments, and qPCR in Keap1-null mouse embryonic fibroblasts, we show that TM-Nrf2S→A374/408/433 had enhanced stability due to impeded interaction with ßTrCP2 and reduced ubiquitination in comparison to WT-Nrf2. In addition, TM-Nrf2 elicited higher expression of the Nrf2 target gene Gclc, potentiated in the presence of a pharmacological AMPK activator. Overall, we propose that AMPK-dependent phospho-sites of Nrf2 can favor its ßTrCP2-mediated degradation and dampen the extent of Nrf2 target gene expression. Therefore, targeting AMPK might be able to diminish Nrf2-mediated responses in cells with overactive Nrf2 due to KEAP1 deficiency.

5.
Front Immunol ; 14: 1117638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251401

RESUMO

Inflammation is thought to be a key cause of many chronic diseases and cancer. However, current therapeutic agents to control inflammation have limited long-term use potential due to various side-effects. This study aimed to examine the preventive effects of norbergenin, a constituent of traditional anti-inflammatory recipes, on LPS-induced proinflammatory signaling in macrophages and elucidate the underlying mechanisms by integrative metabolomics and shotgun label-free quantitative proteomics platforms. Using high-resolution mass spectrometry, we identified and quantified nearly 3000 proteins across all samples in each dataset. To interpret these datasets, we exploited the differentially expressed proteins and conducted statistical analyses. Accordingly, we found that LPS-induced production of NO, IL1ß, TNFα, IL6 and iNOS in macrophages was alleviated by norbergenin via suppressed activation of TLR2 mediated NFκB, MAPKs and STAT3 signaling pathways. In addition, norbergenin was capable of overcoming LPS-triggered metabolic reprogramming in macrophages and restrained the facilitated glycolysis, promoted OXPHOS, and restored the aberrant metabolites within the TCA cycle. This is linked to its modulation of metabolic enzymes to support its anti-inflammatory activity. Thus, our results uncover that norbergenin regulates inflammatory signaling cascades and metabolic reprogramming in LPS stimulated macrophages to exert its anti-inflammatory potential.


Assuntos
Anti-Inflamatórios , Benzopiranos , NF-kappa B , Humanos , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Benzopiranos/farmacologia
6.
PLoS One ; 18(2): e0281191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787302

RESUMO

We showed previously that capsaicin, an active compound of chili peppers, can inhibit platelet-derived growth factor-induced proliferation in primary rat vascular smooth muscle cells (VSMCs). The inhibition of BrdU incorporation by capsaicin in these cells was revoked by BCTC, which might be explained by a role of TRPV1 in VSMCs proliferation. To further pursue the hypothesis of a TRPV1-dependent effect of capsaicin, we investigated TRPV1 expression and function. Commercially available antibodies against two different TRPV1 epitopes (N-terminus and C-terminus) were rendered invalid in detecting TRPV1, as shown: i) in western blot experiments using control lysates of TRPV1-expressing (PC-12 and hTRPV1 transfected HEK293T) and TRPV1-downregulated (CRISPR/Cas gene edited A10) cells, and ii) by substantial differences in staining patterns between the applied antibodies using fluorescence confocal microscopy. The TRPV1 agonists capsaicin, resiniferatoxin, piperine and evodiamine did not increase intracellular calcium levels in primary VSMCs and in A10 cells. Using RT qPCR, we could detect a rather low TRPV1 expression in VSMCs at the mRNA level (Cp value around 30), after validating the primer pair in NGF-stimulated PC-12 cells. We conclude that rat vascular smooth muscle cells do not possess canonical TRPV1 channel activity, which could explain the observed antiproliferative effect of capsaicin.


Assuntos
Capsaicina , Músculo Liso Vascular , Ratos , Humanos , Animais , Capsaicina/farmacologia , Capsaicina/metabolismo , Músculo Liso Vascular/metabolismo , Células HEK293 , Aorta/metabolismo , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Cálcio/metabolismo
7.
Front Immunol ; 13: 966158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311795

RESUMO

Macrophages are prominent immune cells in the tumor microenvironment that can be educated into pro-tumoral phenotype by tumor cells to favor tumor growth and metastasis. The mechanisms that mediate a mutualistic relationship between tumor cells and macrophages remain poorly characterized. Here, we have shown in vitro that different human and murine cancer cell lines release branched-chain α-ketoacids (BCKAs) into the extracellular milieu, which influence macrophage polarization in an monocarboxylate transporter 1 (MCT1)-dependent manner. We found that α-ketoisocaproate (KIC) and α-keto-ß-methylvalerate (KMV) induced a pro-tumoral macrophage state, whereas α-ketoisovalerate (KIV) exerted a pro-inflammatory effect on macrophages. This process was further investigated by a combined metabolomics/proteomics platform. Uptake of KMV and KIC fueled macrophage tricarboxylic acid (TCA) cycle intermediates and increased polyamine metabolism. Proteomic and pathway analyses revealed that the three BCKAs, especially KMV, exhibited divergent effects on the inflammatory signal pathways, phagocytosis, apoptosis and redox balance. These findings uncover cancer-derived BCKAs as novel determinants for macrophage polarization with potential to be selectively exploited for optimizing antitumor immune responses.


Assuntos
Neoplasias , Proteômica , Animais , Humanos , Camundongos , Ativação de Macrófagos , Transporte Biológico , Fagocitose , Macrófagos
8.
Free Radic Biol Med ; 190: 75-93, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918013

RESUMO

NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Homeostase , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia
9.
Planta Med ; 88(9-10): 794-804, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35915889

RESUMO

The 5'-adenosine monophosphate-activated protein kinase (AMPK) is an important metabolic regulator. Its allosteric drug and metabolite binding (ADaM) site was identified as an attractive target for direct AMPK activation and holds promise as a novel mechanism for the treatment of metabolic diseases. With the exception of lusianthridin and salicylic acid, no natural product (NP) is reported so far to directly target the ADaM site. For the streamlined assessment of direct AMPK activators from the pool of NPs, an integrated workflow using in silico and in vitro methods was applied. Virtual screening combining a 3D shape-based approach and docking identified 21 NPs and NP-like molecules that could potentially activate AMPK. The compounds were purchased and tested in an in vitro AMPK α 1 ß 1 γ 1 kinase assay. Two NP-like virtual hits were identified, which, at 30 µM concentration, caused a 1.65-fold (± 0.24) and a 1.58-fold (± 0.17) activation of AMPK, respectively. Intriguingly, using two different evaluation methods, we could not confirm the bioactivity of the supposed AMPK activator lusianthridin, which rebuts earlier reports.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo
10.
Front Immunol ; 13: 935692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983049

RESUMO

Murine macrophages activated by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) polarize to the M1 type by inducing proinflammatory marker proteins and changing their energy metabolism to increased aerobic glycolysis and reduced respiration. We here show that the aliphatic isothiocyanate sulforaphane (Sfn) diminishes M1 marker expression (IL-1ß, IL-6, TNF-α, iNOS, NO, and ROS) and leads to highly energetic cells characterized by both high glycolytic and high respiratory activity as assessed by extracellular flux analysis. Focusing on a potential connection between high glycolytic activity and low IL-1ß expression in M1 (LPS/Sfn) macrophages, we reveal that Sfn impedes the moonlighting function of pyruvate kinase M2 (PKM2) in M1 macrophages. Sfn limits mono/dimerization and nuclear residence of PKM2 accompanied by reduced HIF-1α levels, Stat3 phosphorylation at tyrosine 705, and IL-1ß expression while preserving high levels of cytosolic PKM2 tetramer with high glycolytic enzyme activity. Sfn prevents glutathionylation of PKM2 in LPS-stimulated macrophages which may account for the reduced loss of PKM2 tetramer. Overall, we uncover PKM2 as a novel affected hub within the anti-inflammatory activity profile of Sfn.


Assuntos
Interleucina-1beta , Isotiocianatos , Macrófagos , Piruvato Quinase , Sulfóxidos , Animais , Interleucina-1beta/metabolismo , Isotiocianatos/farmacologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Piruvato Quinase/metabolismo , Sulfóxidos/farmacologia
11.
Food Chem ; 388: 132968, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447587

RESUMO

Considering the ongoing interest in foods rich in nutrients like polyunsaturated fatty acids and bioactive polar lipids, the chemical and biological investigation of Portulaca oleracea (purslane), a herbaceous plant typically appreciated in Mediterranean and Asiatic diet, was carried out. The LC-ESI/HRMS/MSn analysis of extracts and lipid enriched fractions of purslane edible parts provided a comprehensive polar lipid profile, ranging from linear and cyclic oxylipins to high molecular weight lipids including glycolipids, phospholipids and sphingolipids. The evaluation of the anti-inflammatory potential by in vitro reporter gene assays highlighted the ability of purslane lipid enriched fractions, at a concentration of 20 µg/ml, to inhibit the TNF-α-stimulated NF-kB pathway by 30-40% and to activate PPAR-É£ and Nrf2 transcription factors to the same extent or more than the positive control, respectively. Altogether, these results encourage to revalue purslane in human nutrition as a source of bioactive polar lipids.


Assuntos
Portulaca , Anti-Inflamatórios/farmacologia , Cromatografia Líquida/métodos , Humanos , Fosfolipídeos , Portulaca/química , Espectrometria de Massas em Tandem/métodos
12.
Metabolites ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448474

RESUMO

This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3',4',5'-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection.

13.
Plants (Basel) ; 11(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270069

RESUMO

Balms and resins of Picea abies, Larix decidua, and Pinus nigra are traditionally used to treat wounds. Three chromatographic techniques differing in separation capacity and technical demands were employed to distinguish among these plant exudates. A TLC method was established for fingerprint comparison, providing a quick overview of a large number of samples at low cost. HPLC-DAD (RP18) and UHPSFC-DAD (Torus 2-Picolylamin), hyphenated to ESI-MS, represented orthogonal chromatographic systems with high separation performance. The developed methods allow for the separation and detection of major and minor constituents belonging to different compound classes (phenyl carboxylic acids, lignans, diterpene resin acids). The qualitative compositions of the diterpene resin acids, the main compounds in the exudates, were comparable in all three genera. Differences were detected in the distribution of hydroxylated diterpene resin acids, pinoresinol, and hydroxycinnamic acids. The three tested chromatographic systems with varying demands on lab equipment offer appropriate tools for the quality assessment of Picea abies, Larix decidua, and Pinus nigra. The extracts were furthermore tested at three different concentrations (10 µg/mL, 3 µg/mL, and 1 µg/mL) for boosted re-epithelialization, a crucial step in the wound-healing process, in an in vitro HaCaT keratinocyte-based scratch assay. Lysophosphatidic acid (LPA, 10 µM) and extracts of several medicinal plants well known for their wound-healing properties (birch, marigold, St. John's wort, manuka honey) were used as positive controls. Picea abies and Pinus nigra showed concentration dependency; significant activity was measured for Larix decidua at 3 µg/mL.

14.
Inflammopharmacology ; 30(5): 1835-1841, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35260973

RESUMO

Xylopic acid (XA) is a kaurene diterpene which naturally exists in African plants such as Xylopia aethiopica. It has been established to exhibit acute and chronic anti-inflammatory activities from our earlier studies. This current work sets out to shed light on the potential molecular target(s) of xylopic acid. Selection of investigated targets (NF-κB, Nrf2 and PTP1B) was based on an unbiased approach, using the SPiDER in silico prediction tool, and a candidate approach, examining well-known anti-inflammatory targets. Reporter gene assays were used to test for altered NF-κB and Nrf2 activities in transfected HEK or CHO cells, respectively, and immunoblot and flow cytometric analyses examined protein expression of the Nrf2/NF-kB target genes HO-1 and VCAM-1 in HUVEC. An effect of XA on PTP1B activity assay was studied using an in vitro enzyme assay with recombinant human enzyme and pNPP as substrate as well as by looking at insulin receptor phosphorylation in HepG2 cells. XA at 30 µM significantly (p < 0.001) inhibited the NF-κB-dependent reporter gene expression and enhanced activation of Nrf2 in a concentration-dependent manner when compared to the control. XA also marginally increased HO-1 protein expression levels while expression of VCAM-1 was reduced to 70% in XA-treated endothelial cells. However, XA did not show any sign of inhibition of PTP1B or a related phosphatase. Our findings suggest that the anti-inflammatory mechanism of XA entails the inhibitory effect on NF-κB and an increased activity of Nrf2, accompanied by increased expression of HO-1 and reduced expression of VCAM-1.


Assuntos
Diterpenos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Cricetinae , Cricetulus , Diterpenos do Tipo Caurano , Células Endoteliais/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Monoéster Fosfórico Hidrolases , Receptor de Insulina , Molécula 1 de Adesão de Célula Vascular
15.
Eur J Pharm Biopharm ; 170: 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798283

RESUMO

In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.


Assuntos
Lecitinas/farmacologia , Óleos de Plantas/farmacologia , Pele/citologia , Pele/efeitos dos fármacos , Triglicerídeos/farmacologia , Cicatrização/efeitos dos fármacos , Betula , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Humanos , Técnicas In Vitro , Picea , Triterpenos/farmacologia
16.
J Nat Prod ; 84(12): 3110-3116, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34902249

RESUMO

The natural alkaloid evodiamine enhances cholesterol efflux from cultured THP-1-derived macrophages, but whether it has any impact on blood lipids in vivo remains unknown. In this study, the effect of evodiamine on hyperlipidemia induced by a high-fat diet (HFD) was investigated in mice. Intragastric administrations of evodiamine (10 and 20 mg/kg) for 8 weeks resulted in a significant improvement of metabolic lipid profiles by reducing the plasma levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Evodiamine also significantly decreased hepatic lipid accumulation and hepatic total bile acids (TBA). Mechanistically, evodiamine increased ATP-binding cassette transporter G1 (ABCG1) mRNA and protein expression and up-regulated peroxisome proliferator-activated receptor gamma (PPARγ) expression in the liver. Taken together, the natural product evodiamine lowers blood lipids in HFD-fed mice likely through promoting the PPARγ-ABCG1 signaling pathway.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Dieta Hiperlipídica , Lipídeos/sangue , PPAR gama/metabolismo , Quinazolinas/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Peso Corporal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Extratos Vegetais/farmacologia
17.
Curr Mol Pharmacol ; 14(6): 993-1002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319694

RESUMO

BACKGROUND: Substances present in nature have been a continuous source for the development of drugs for cardiovascular and infectious diseases, cancer, and many other diseases. As the literature concerning these natural products grows, it becomes more difficult for a reader to quickly grasp the essential facts and develop a well-informed impression of this field of research. Until now, it has also been difficult to determine which natural products and research objectives were gaining the most attention as measured by a number of citations. OBJECTIVE: The current study of all published articles concerned with natural products sought to identify which natural products and which research objectives are connected with the major contributors to scientific journals based on the number of relevant publications and the number of times each publication was cited elsewhere. METHODS: Bibliometric data, including citation data, were extracted from the Web of Science database using the search string TS=("natural product*)" and analyzed by the VOSviewer software. RESULTS: The search yielded 63,194 articles, with more than half of the manuscripts published since 2012. The ratio of original articles to reviews was 5.8:1. The major contributing countries were the United States, China, Germany, Japan, and India. Articles were published mainly in journals focused on chemistry, pharmacology or biochemistry. Curcumin, resveratrol, and terpenoids were the most frequently cited natural products. CONCLUSION: The results of the current study provide researchers from different backgrounds and healthcare professionals with a brief overview of the major trends in natural-product research in the form of a citation-based summary of the relevant literature.


Assuntos
Produtos Biológicos , Curcumina , Neoplasias , Bibliometria , Produtos Biológicos/uso terapêutico , Curcumina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Software , Estados Unidos
18.
Planta Med ; 86(15): 1048-1049, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33049790
19.
Front Cell Dev Biol ; 8: 628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760724

RESUMO

5'-AMP-activated protein kinase (AMPK) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) are main players in the cellular adaptive response to metabolic and oxidative/xenobiotic stress, respectively. AMPK does not only balance the rate of fuel catabolism versus anabolism but also emerges as regulator of gene expression. We here examined the influence of AMPK on Nrf2-dependent gene transcription and the potential interplay of the two cellular stress hubs. Using gene expression analyses in wt and AMPKα1 -/- or Nrf2 -/- mouse embryonal fibroblasts, we could show that AMPK only affected a portion of the entire of Nrf2-dependent transcriptome upon exposure to the Nrf2 activator sulforaphane (Sfn). Focusing on selected genes with positive regulation by Nrf2 and either positive or no further regulation by AMPK, we revealed that altered Nrf2 levels could not account for the distinct extent of transactivation of certain Nrf2 targets in wt and AMPK -/- cells (assessed by immunoblot). FAIRE-qPCR largely excluded distinct chromatin accessibility of selected Nrf2-responsive antioxidant response elements (ARE) within the regulatory gene regions in wt and AMPK-/- cells. However, expression analyses and ChIP-qPCR showed that in AMPK-/- cells, levels of BTB and CNC homology 1 (Bach1), a competitor of Nrf2 for ARE sites with predominant repressor function, were higher, and Bach1 also bound to a greater relative extent to the examined ARE sites when compared to Nrf2. The negative influence of AMPK on Bach1 was confirmed by pharmacological and genetic approaches and occurred at the level of mRNA synthesis. Overall, the observed AMPK-mediated boost in transactivation of a subset of Nrf2 target genes involves downregulation of Bach1 and subsequent favored binding of activating Nrf2 over repressing Bach1 to the examined ARE sites.

20.
Biochem Pharmacol ; 177: 114022, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32437644

RESUMO

Increased cholesterol efflux from macrophage foam cells in the subendothelial space confers protection against atherosclerosis. Soraphen A, a myxobacterial macrolactone, is an inhibitor of acetyl coenzyme A carboxylases (ACC), which control fatty acid synthesis and oxidation. To assess a potential direct link between macrophage cholesterol efflux and ACC inhibition, we examined [3H]-cholesterol efflux from human THP-1-derived foam cells in the presence of soraphen A. We dissected underlying molecular events by western blot analyses, RT-qPCR, reporter gene and coactivator recruitment assays as well as relative quantification of free and total cholesterol. Soraphen A increased cholesterol efflux from macrophage foam cells via upregulation of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1). Soraphen A enhanced transcription of ABCA1 in an LXR-dependent manner, however, without direct binding to the ligand-binding domain of this nuclear receptor. Soraphen A elevated the cellular level of free cholesterol, and failed to activate LXR upon exogenous supplementation with fatty acids or inhibition of cholesterol synthesis. Thus, impeded conversion from acetyl- to malonyl-CoA by soraphen A may lead to more unesterified cholesterol and thus potential LXR agonists. The present study reveals ACC inhibition as a previously unrecognized mechanism to regulate macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Células Espumosas/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Macrolídeos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Linhagem Celular , Colesterol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células Espumosas/metabolismo , Células HEK293 , Humanos , Receptores X do Fígado/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...